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action of inclined temperature gradients

ALEXANDER A. NEPOMNYASHCHY1, 2

AND ILYA B. S IMANOVSKII1,2†
1Department of Mathematics, Technion – Israel Institute of Technology, 32000, Haifa, Israel

2Minerva Centre for Nonlinear Physics of Complex Systems, Technion – Israel Institute of Technology,
32000, Haifa, Israel

(Received 15 January 2008 and in revised form 26 February 2009)

The development of instabilities under the joint action of the van der Waals forces
and Marangoni stresses in a two-layer film in the presence of an inclined temperature
gradient is investigated. The problem is solved by means of a linear stability theory
and nonlinear simulations. It has been found that for sufficiently large values of the
ratio between the longitudinal and transverse Marangoni numbers, the real part of
the linear growth rate does not depend on the direction of the wavenumber, except
the case of nearly longitudinal disturbances. Numerous types of nonlinear evolution
have been observed, among them are ordered systems of droplets, ‘splashes’, oblique
waves, modulated transverse and longitudinal structures.

1. Introduction
Two-layer fluid systems are widespread in nature and engineering. When the

layers are sufficiently thin, the flows are strongly affected by interfacial phenomena,
specifically by the Marangoni effect. Marangoni convection in two-layer fluid systems
has been studied both in the case of a temperature gradient applied across the layers
and in the case of a temperature gradient directed along the interfaces, as well as
for a temperature gradient inclined with respect to the interface (Simanovskii &
Nepomnyashchy 1993; Nepomnyashchy, Simanovskii & Legros 2006). The latter case
is of a special interest. The interplay between the thermocapillary flow generated
by the longitudinal component of the temperature gradient and the Marangoni
instability caused by the transverse component of the temperature gradient can
lead to qualitatively new phenomena. Until now, Marangoni convection under the
action of inclined temperature gradients has been studied only for relatively thick
layers where the instability of a thermocapillary flow manifests itself in the form of
hydrothermal waves or convection patterns, while the deformations of the interfaces
are not important (Davis 1987; Nepomnyashchy, Simanovskii & Braverman 2001;
Ueno, Kurosawa & Kawamura 2002; Ospennikov & Schwabe 2004; Shklyaev &
Nepomnyashchy 2004; Simanovskii et al. 2006).

In the past few decades, the development of microfluidics and nanotechnology
led to significant progress in the exploration of thin film flows. Such kinds of flows
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have numerous technological applications (coating, flotation, biological membranes,
adhesives etc.). The instabilities in thin films are of potential use in the formation of
regular nanostructures and ordered porous membranes, in soft lithographic techniques
and in other areas of nanotechnology.

The dynamics of ultra-thin (but still macroscopic) films, with the thickness less than
100 nm, is of great importance. In the case of ultra-thin films, it is necessary to take
into account the long-range intermolecular forces (first of all, van der Waals forces)
acting between molecules of the liquid and substrate (Israelachvili 1992). Depending
on the sign of the Hamaker constant, these forces can either stabilize the film or
create a longwave instability leading to the film rupture through the formation of
holes (Oron, Davis & Bankof 1997).

The dynamics of multilayer ultra-thin films is characterized by several Hamaker
constants, which can be of different signs, therefore it can be much richer. A theoretical
description of instabilities in two-layer systems sandwiched between two solid plates
has been developed by Joo & Hsieh (2000), Merkt et al. (2005) and Lenz & Kumar
(2007a). Two-layer systems that include a bottom layer resting on a solid substrate
and a top layer in contact with a gas phase have been studied by Pototsky et al. (2004,
2005, 2006), Bandyopadhyay, Gulabani & Sharma (2005), Fisher & Golovin (2005),
Bandyopadhyay & Sharma (2006) and Bandyopadhyay, Sharma & Rastogi (2008).
A three-layer film confined between solid walls has been studied by Lenz & Kumar
(2007b). Instabilities of ultra-thin two-layer films caused by intermolecular forces have
been observed in experiments by Faldi, Composto & Winey (1995), Lambooy et al.
(1996), Pan et al. (1997), Sferrazza et al. (1997, 1998), David et al. (1998), Renger
et al. (2000) and Morariu, Schaffer & Steiner (2003).

The dynamics of ultra-thin films under the joint action of the Marangoni effect
and van der Waals forces has not yet been extensively explored. The authors are not
aware of any experimental works on that subject. Merkt et al. (2005) and Pototsky
et al. (2005) have considered a general structure of the evolution equations. The
development of instabilities has been studied either in the case of a temperature
gradient directed along the interfaces (Miladinova et al. 2002; Nepomnyashchy &
Simanovskii 2006) or in the case of a temperature gradient applied across the
layers (Joo & Hsieh 2000; Nepomnyashchy & Simanovskii 2007). It is reasonable to
consider the situation when the temperature gradient is inclined with respect to the
interfaces also for ultra-thin films. Let us emphasize that the instability mechanisms
in thin films are completely different from those in thick layers. The instabilities
which are developed due to van der Waals forces and Marangoni stresses lead to
significant deformations of the interfaces. The subject of the present paper is the
development of deformational instabilities in a thin two-layer film under the action
of an inclined temperature gradient. To our knowledge, the latter kind of instabilities
has never been studied formerly for ultra-thin films, neither theoretically nor
experimentally.

The mathematical model is formulated in § 2. The linear stability of a parallel
thermocapillary flow is considered in § 3. It is shown that in thin layers, in
contradistinction to the results obtained for thick layers, a novel effect, isotropization
of the growth rate dependence on the wavevector for three-dimensional disturbances,
takes place. Section 4 is devoted to numerical simulations of the nonlinear problem.
A new phenomenon, formation of regular structures, is observed: droplets created
in the course of the film decomposition due to the action of van der Waals
forces can be ordered by the thermocapillary flow. A summary of results is given
in § 5.
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Figure 1. Geometric configuration of the region and coordinate axes

2. Long-wave evolution equations
2.1. Thermocapillary flow

2.1.1. Formulation of the problem

Consider a system of two superposed layers of immiscible liquids with different
physical properties (see figure 1). The bottom layer rests on a solid substrate, while
the top layer is in contact with the adjacent gas phase. The temperature of the solid
substrate is Ts +Ax, and the temperature of the gas near the interface is Tg +Ax. Thus,
it is assumed that the same constant temperature gradient is imposed in the direction
of the axis x in the solid substrate and in the gas phase. All the variables referring to
the bottom layer are marked by subscript 1, and all the variables referring to the top
layer are marked by subscript 2. The equilibrium thicknesses of the layers are H 0

i ,
i = 1, 2. The deformable interfaces are described by equations z =H1(x, y, t) (liquid–
liquid interface) and z = H2(x, y, t) (liquid–gas interface). The ith fluid has density
ρi , kinematic viscosity νi , dynamic viscosity ηi = ρiνi , thermal diffusivity χi and heat
conductivity κi . The surface tension coefficients on the lower and upper interfaces, σ1

and σ2, are linear functions of temperature T : σ1 = σ 0
1 −α1T , σ2 = σ 0

2 −α2T . The effect
of gravity is neglected. The intermolecular forces are neglected in this subsection.

The complete system of nonlinear equations governing Marangoni convection is
written in the following form (Simanovskii & Nepomnyashchy 1993):

∂vm

∂t
+ (vm · ∇)vm = − 1

ρm

∇Pm + νm
vm, (2.1)

∂Tm

∂t
+ vm · ∇Tm = χm
Tm, (2.2)

∇ · vm = 0, m = 1, 2. (2.3)

Here, vm and Pm are the velocity and the difference between the overall pressure and
the atmospheric pressure in the mth liquid, correspondingly. The boundary conditions
on the rigid boundary are:

v1 = 0, T1 = Ts + Ax, at z = 0. (2.4)

On the deformable interface z = H1, the following boundary conditions hold: the
balance of normal stresses

P2 − P1 + 2σ1K1 =

[
−η1

(
∂v1i

∂xk

+
∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk

+
∂v2k

∂xi

)]
n1in1k; i, k = 1, 2, 3;

(2.5)
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the balance of tangential stresses[
−η1

(
∂v1i

∂xk

+
∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk

+
∂v2k

∂xi

)]
τ

(l)
1i n1k − α1τ

(l)
1i

∂T1

∂xi

= 0,

l = 1, 2; i, k = 1, 2, 3; (2.6)

the continuity of the velocity field

v1 = v2; (2.7)

the kinematic equation for the interface motion

∂H1

∂t
+ v1x

∂H1

∂x
+ v1y

∂H1

∂y
= v1z; (2.8)

the continuity of the temperature field

T1 = T2; (2.9)

and the balance of normal heat fluxes(
κ1

∂T1

∂xi

− κ2

∂T2

∂xi

)
n1i = 0. (2.10)

Similar boundary conditions are imposed on the deformable interface z = H2:

−P2 + 2σ2K2 = −η2

(
∂v2i

∂xk

+
∂v2k

∂xi

)
n2in2k, (2.11)

−η2

(
∂v2i

∂xk

+
∂v2k

∂xi

)
τ

(l)
2i n2k − α2τ

(l)
2i

∂T3

∂xi

= 0, l = 1, 2, i, k = 1, 2, 3, (2.12)

∂H2

∂t
+ v2x

∂H2

∂x
+ v2y

∂H2

∂y
= v2z, (2.13)

where K1 and K2 are the mean curvatures, n1 and n2 are the normal vectors and
τ

(l)
1 and τ

(l)
2 are the tangential vectors of the lower and upper interfaces. In the

quantities with two subscripts, the first subscript corresponds to the number of the
liquid (m =1, 2) and the second subscript determines the number of the Cartesian
coordinate (i, k = 1, 2, 3; x1 = x, x2 = y, x3 = z). The usual summation convention is
applied. For a heat flux on the liquid–gas interface, we use an empirical condition

κ2

∂T2

∂xi

n2i = −q(T2 − Tg − Ax), (2.14)

where q is the heat exchange coefficient which is assumed to be constant.

2.1.2. Derivation of the longwave amplitude equation

The system of equations and boundary conditions (2.1)–(2.14) is rather complicated.
However, in the case of thin film flows, when the fluid system is thin in one
direction and extended in other directions, the nonlinear model governing three-
dimensional flows with a deformable interface can be drastically simplified by means
of a long-wavelength expansion . The leading order of this expansion is known as the
lubrication approximation . The longwave approach is based on the assumption that
the characteristic spatial scales in the directions x and y are much larger than that in
the direction z. It is assumed that the solution of equations and boundary conditions
(2.1)–(2.14) depends on the scaled horizontal coordinates X = εx and Y = εy, ε � 1,
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rather than on x and y. Also, it is assumed that the solution depends on the scaled
time variable τ = εt . The details of the longwave approach applied to thermocapillary
flows can be found in review papers (Davis 1987; Oron et al. 1997).

At the leading order, the evolution of the system is governed by the following
equations and boundary conditions:

U1zz = 0; V1zz = 0; U1X + V1Y + W1z = 0; T1zz = 0; 0 < z < H1; (2.15)

U2zz = 0; V2zz = 0; U2X + V2Y + W2z = 0; T2zz = 0; H1 < z < H2; (2.16)

z = 0 : U1 = V1 = W1 = 0; T1 = Ts + Ax; (2.17)

z = H1 : U1 = U2; V1 = V2; W1 = W2; (2.18)

η2U2z − η1U1z − α1(T1X + H1XT1z) = 0; (2.19)

η2V2z − η1V1z − α1(T1Y + H1Y T1z) = 0; (2.20)

H1τ + U1H1X + V1H1Y = W1; (2.21)

T1 = T2; κ1T1z = κ2T2z; (2.22)

z = H2 : −η2U2z − α2(T2X + H2XT2) = 0; (2.23)

−η2V2z − α2(T2Y + H2Y T2z) = 0; (2.24)

H2τ + U2H2X + V2H2Y = W2; (2.25)

κ2T2z = −q(T2 − Tg − Ax), (2.26)

where subscripts z, X, Y and τ denote corresponding partial derivatives, Uj , Vj and
Wj , j = 1, 2 are the leading-order terms in the expansions in powers of ε:

uxj = Uj + · · · , uyj = Vj + · · · , uzj = εWj + · · · .

Solving the problem for the temperature fields, we find

T1 = Ts − (Ts − Tg)Dqκ2z + Ax, (2.27)

T2 = Ts − (Ts − Tg)Dq[(κ2 − κ1)H1 + κ1z] + Ax, (2.28)

where

D = [κ1κ2 + q(κ2 − κ1)H1 + qκ1H2]
−1. (2.29)

Thus, in each layer the temperature gradient is inclined to the vertical direction. In
the case of flat interfaces, the distribution of the temperature is piecewise linear. The
x-components of the flow velocities generated by the thermocapillary stresses are
determined by the following formulae:

U1 =
(Ts − Tg)κ2

η1

[D(α1qH1 − α2κ1)]Xz − (α1 + α2)A

η1

z, (2.30)

U2 =
(Ts − Tg)κ2

η2

{
−α2κ2DXz +

H

η1

[D(α1η2qH1 − α2(η2 − η1)κ1)X]X

}

−
[
α2

η2

(z − H1) +
α1 + α2

η1

H1

]
A. (2.31)

The expressions for y-components of the flow velocities, V1 and V2, can be obtained
from U1 and U2 by replacing X by Y . Solving the continuity equations with respect
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to W1 and W2 with corresponding boundary conditions, we find that

W1(X, Y, H1) = −
∫ H1

0

(U1X + V1Y ) dz, (2.32)

W2(X, Y, H2) = −
∫ H1

0

(U1X + V1Y ) dz +

∫ H2

H1

(U2X + V2Y ) dz. (2.33)

Using (2.32) and (2.33), we rewrite the kinematic conditions (2.21) and (2.25) in the
following form:

H1τ +

(∫ H1

0

U1 dz

)
X

+

(∫ H1

0

V1 dz

)
Y

= 0, (2.34)

H2τ +

(∫ H1

0

U1 dz +

∫ H2

H1

U2 dz

)
X

+

(∫ H1

0

V1 dz +

∫ H2

H1

V2 dz

)
Y

= 0. (2.35)

Substituting expressions for flow velocities obtained above into (2.34) and (2.35), we
arrive to a closed system of equations that governs the evolution of a heated two-layer
film under the action of the thermocapillary effect:

H1τ + ∇ · QT
1 = 0, H2τ + ∇ · QT

2 = 0, (2.36)

where

QT
1 =

(Ts − Tg)κ2

2η1

H 2
1 ∇[D(qα1H1 − α2κ1)] − (α1 + α2)A

2η1

H 2
1 ex, (2.37)

QT
2 =

(Ts − Tg)

2η1η2

{
H 2

2 ∇[(−α2κ1η1)D] + (2H2 − H1)H1∇{D[qα1η2H1 − α2κ1(η2 − η1)]}
}

−
[
α2A

2η2

(H2 − H1)
2 +

α1 + α2

2η1

AH1(2H2 − H1)

]
ex, (2.38)

where ex is the unit vector of the axis x.

2.2. Flows in the presence of van der Waals forces

In the framework of the continuum approach, the van der Waals forces manifest
themselves as external normal stresses (‘disjoining pressures’) imposed on each
interface (Israelachvili 1992). The disjoining pressures modify the dependences of
the pressures P1 and P2 in each layer on the layer thicknesses H1 and H2 in the
following way (Fisher & Golovin 2005):

P1 = −σ1∇2H1 − σ2∇2H2 + W1(H1, H2), (2.39)

P2 = −σ2∇2H2 + W2(H1, H2), (2.40)

where

W1(H1, H2) =
Asg − As2 − Ag1

6πH 3
2

+
As2

6πH 3
1

, (2.41)

W2(H1, H2) =
Asg − As2 − Ag1

6πH 3
2

+
Ag1

6π(H2 − H1)3
. (2.42)

Here, Asg , As2 and Ag1 are Hamaker constants characterizing the interactions between
the solid substrate and the gas across the two layers, between the solid substrate and
liquid 2 across liquid 1 and between the gas phase and liquid 1 across liquid 2,
correspondingly.
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It was shown earlier (Pototsky et al. 2005; Nepomnyashchy & Simanovsky 2006)
that in the framework of the lubrication approximation, the influence of the surface
tension and van der Waals forces on the dynamics of a non-isothermic two-layer thin
film is described by additional flux terms in evolution equations:

H1τ + ∇ ·
(

QT
1 + Qv dW

1

)
= 0, H2τ + ∇ ·

(
QT

2 + Qv dW
2

)
= 0, (2.43)

where

Qv dW
1 = Q0

1 = F11∇P1 + F12∇P2, Qv dW
2 = F21∇P1 + F22∇P2. (2.44)

The pressures P1 and P2 are determined by expressions (2.39) and (2.40), and the
mobility functions are

F11 = − 1

3η1

H 3
1 ; F12 = − 1

2η1

H 2
1 (H2 − H1); F21 =

1

6η1

H 3
1 − 1

2η1

H 2
1 H2;

F22 = (H2 − H1)

[
H 2

1

(
1

2η1

− 1

3η2

)
+ H1H2

(
− 1

η1

+
2

3η2

)
− 1

3η2

H 2
2

]
.

Let us transform (2.43) to a non-dimensional form. The natural vertical length scale
is the initial thickness of the lower layer H 0

1 . At the present stage, we do not fix the
horizontal length scale L∗. In Fisher & Golovin (2005), the characteristic scale

L∗ = L∗
0 =

(
H 0

1

)2
√

6πσ 0
1 /|Asg| (2.45)

has been suggested, which is convenient for the analysis of the instability induced by
intermolecular forces. We choose

τ ∗ =
η1(L

∗)4

σ 0
1

(
H 0

1

)3
(2.46)

as a time scale and

p∗ =
σ 0

1 H 0
1

(L∗)2
(2.47)

as a pressure scale.
Equations (2.43) written in the non-dimensional form look as follows:

h1τ + ∇ · q1 = 0, h2τ + ∇ · q2 = 0, (2.48)

q1 = f11∇p1 + f12∇p2 + qT
1 , q2 = f21∇p1 + f22∇p2 + qT

2 , (2.49)

where hj = Hj/H
0
1 , pj = Pj/p

∗, j = 1, 2,

f11 = −1

3
h3

1, f12 = −1

2
h2

1(h2 − h1),

f21 =
1

6
h3

1 − 1

2
h2

1h2, f22 = (h2 − h1)

[
h2

1

(
1

2
− η

3

)
+ h1h2

(
−1 +

2η

3

)
− η

3
h2

2

]
.

We use the same notation τ and ∇ for new, non-dimensional, variables. Later on, we
assume that the dependence of interfacial tensions on the temperature is relatively
weak and can be neglected in the boundary conditions for normal stresses (but not in
those for tangential stresses where it is the source of a thermocapillary motion). The
contributions of disjoining pressures are included:

p1 = −∇2h1 − σ∇2h2 + w1(h1, h2), (2.50)

p2 = −σ∇2h2 + w2(h1, h2), (2.51)
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w1 =
a0 − a1 − a2

h3
2

+
a1

h3
1

, (2.52)

w2 =
a0 − a1 − a2

h3
2

+
a2

(h2 − h1)3
. (2.53)

The non-dimensional expressions for the fluxes generated by the thermocapillary
effect are

qT
1 =

M⊥

2
h2

1∇[d(Bih1 − ακ)] −
M‖

2
(1 + α)h2

1ex, (2.54)

qT
2 =

M⊥

2

{
− h2

2∇( dηακ) + (2h2 − h1)h1∇{d[Bih1 − ακ(1 − η)]}
}

−
M‖

2

[
ηαh2

2 + (1 + α − ηα)h1(2h2 − h1)
]
ex. (2.55)

Here

M⊥ =
α1(Ts − Tg)

σ 0
1

(
L∗

H 0
1

)2

, (2.56)

M‖ =
α1AL∗

σ 0
1

(
L∗

H 0
1

)2

(2.57)

are the modified transverse and longitudinal Marangoni numbers, correspondingly:

Bi =
qH 0

1

κ2

(2.58)

is the Biot number, and

d = [κ + Bi (1 − κ)h1 + Biκh2]
−1, (2.59)

η = η1/η2, κ = κ1/κ2, σ = σ 0
2 /σ 0

1 , α = α2/α1,

a0 = sign(Asg)

(
L∗

L∗
0

)2

, a1 =
As2

|Asg|

(
L∗

L∗
0

)2

, a2 =
Ag1

|Asg|

(
L∗

L∗
0

)2

. (2.60)

If the scaling of the horizontal length is chosen as (2.45), then |a0| =1.
The system of (2.48) contains ten non-dimensional parameters: M⊥, M‖, Bi , σ, α,

η, κ, a0, a1, and a2.
Let us estimate the characteristic values of these parameters in the case L∗ = L∗

0.
Fisher & Golovin (2005) showed that for H 0

1 ∼ 100 nm, the typical values of parameter
L∗

0 determined by (2.45) are between 20 and 200 μm. Thus, the ratio ε = H 0
1 /L∗

0 is
between 5×10−4 and 5×10−3, which justifies the longwave approach. The Marangoni
numbers are determined by the intensity of the external heating. The assumption that
the surface tension coefficients are linear functions of the temperature is reasonable
when αj |Ts − Tg| � σ 0

j , αjAL � σ 0
j , j = 1, 2, where L is the characteristic size of the

system in x-direction. Therefore, the modified Marangoni numbers should satisfy
the conditions M⊥ � ε−2, M‖ � ε−2(L∗/L). The Biot number characterizes the heat
transfer at the free boundary. Generally, one can expect that this parameter is
rather small in the case of a thin layer. However, the evaporation of film can
significantly increase cooling at the liquid/gas interface and hence the effective Biot
number (Colinet et al. 2003; Haut & Colinet 2005). Other six parameters are intrinsic
characteristics of the multilayer system substrate/liquid 1/liquid 2/gas. Parameters
α, η and σ are just ratios of physical parameters of the liquids, while a0, a1 and a2
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depend on the values of the Hamaker constants Asg , As2 and Ag1. The latter constants
are determined by the dielectric permittivities of all the media as functions of the
frequency (Lifshitz & Pitaevskii 1980; Israelachvili 1992), and they depend mainly on
the zero-frequency dielectric constants and high-frequency refractive indices of the
media (Israelachvili 1992; Pototsky et al. 2005).

3. Linear stability theory
3.1. Dispersion relation

Let us consider a parallel thermocapillary flow with plane interfaces located at z = H 0
1

and z = H 0
2 . This flow corresponds to the basic solution of (2.48)

h1 = 1, h2 =h = 1 + a,

where h = H 0
2 /H 0

1 , a = (H 0
2 − H 0

1 )/H 0
1 .

In order to investigate the stability of the plane two-layer film, we substitute

h1 = 1 + h̃1, h2 = 1 + a + h̃2

into (2.48), and linearize them with respect to variables h̃1, h̃2.
The solutions of the linear problem can be written as

h̃j (X, Y, τ ) = h̄je
i k · R+λτ , j = 1, 2, (3.1)

where R =(X, Y ), k = (kx, ky) is the wavevector, λ is the growth rate and h̄j , j = 1, 2
are constants. Substituting (3.1) into the linearized equations, we obtain a dispersion
relation

det(N − λI) = 0, (3.2)

which determines the eigenvalues λ(k). Here I is the unit matrix, while matrix N can
be presented in the following form:

N = B +
M⊥Bik2κ

2(κ + Bi + Biκa)2
C + ikxM‖D. (3.3)

Matrix B presents the contribution of the van der Waals forces and surface tensions
and has the following components:

B11 = −k2

3
(k2 − 3a1) − 3k2a2

2a3
,

B12 = −k2

(
1

3
+

a

2

)[
σk2 − 3(a0 − a1 − a2)

(a + 1)4

]
+

3k2a2

2a3
,

B21 = −k2

(
1

3
+

a

2

)
(k2 − 3a1) +

[
1

2
− η

3
+ (a + 1)

(
−1 +

2η

3

)
− η

3
(a + 1)2

]
3k2a2

a3
,

B22 = −k2

(
1

3
+

a

2

)[
σk2 − 3(a0 − a1 − a2)

(a + 1)4

]

+ ak2

[
1

2
− η

3
+ (a + 1)

(
−1 +

2η

3

)
− η

3
(a + 1)2

]

×
[
σk2 − 3(a0 − a1 − a2)

(a + 1)4
− 3a2

a4

]
.
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The second and third terms in the right-hand side of (3.3) are caused by the
thermocapillary effect. The elements of matrix C are as follows:

C11 = 1 + Bi (a + 1) + α(1 − κ),

C12 = ακ − Bi ,

C21 = ηαa2(1 − κ) + (2a + 1)[α(1 − κ) + 1 + Bi (a + 1)],

C22 = ηακa2 + (2a + 1)(ακ − Bi ).

The elements of matrix D are as follows:
D11 = 1 + α, D12 = 0, D21 = (a/2)[1 + α(1 − η)], D22 = 1 + α(1 + ηa).

3.2. Marangoni instability

In this subsection, we consider sufficiently thick films where the influence of the van
der Waals interactions is weak in comparison with the Marangoni effect.

First, let us neglect the intermolecular interactions (aj = 0). In the longwave limit
(k2 � 1), we can also neglect the terms caused by the surface tensions, which are
proportional to k4 and hence are small with respect to Marangoni terms proportional
to k2. In that limit, the dispersion relation (3.2) becomes

det[M⊥Ek2 + ikxM‖D − λI] = 0, (3.4)

where

E =
Biκ

2(κ + Bi + Biκa)2
C. (3.5)

Denote m⊥ = M⊥k2, m‖ = M‖kx , β = m‖/m⊥, λ= m⊥Λ. The rescaled growth rate Λ

satisfies the quadratic equation

Λ2 − [tr(E) + iβtr(D)]Λ + det(E) + iFβ − β2D11D22 = 0, (3.6)

where F = E11D22 + E22D11 − E12D21.
Let us consider some particular cases.

3.2.1. The case β = 0

This case corresponds to a vertical temperature gradient (M‖ =0) or longitudinal
stripe orientation (kx = 0). Let us emphasize that in this paper the longitudinal stripes
are developed due to the longwave deformational instability and, hence, they are
different from the shortwave longitudinal rolls studied by Demekhin, Kalliadasis &
Velarde (2006). Recall the main results obtained by Nepomnyashchy & Simanovskii
(2007). The growth rate

Λ = Λ0 =
Biκ

2(κ + Bi + Biκ)2
σ, (3.7)

where σ satisfies the equation

σ 2 − tr(C)σ + det(C) = 0, (3.8)

tr(C) = 1 − Bia + α(1 + ηκa2 + 2κa), (3.9)

det(C) = ηαa2(κ + Bi + Biκa). (3.10)

Obviously, det(C) is always positive, while tr(C) is positive when Bi < Bi c and
negative when Bi > Bi c; here

Bi c =
1 + α(1 + ηκa2 + 2κa)

a
. (3.11)
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It is clear from the expression

σ =
1

2
[tr(C) ±

√
(tr(C))2 − 4det(C)] (3.12)

that the real part of σ is positive for Bi < Bi c and negative for Bi > Bi c. Therefore, the
Marangoni instability is developed in the case when heating is from below (Ts > Tg ,
M > 0), when Bi < Bi c, and for heating from above (Ts < Tg , M < 0), when Bi > Bi c.
Note that the critical Marangoni number for the longwave deformational instability
is always equal to zero. This result, which is valid only when the gravity is neglected,
is well known for both single-layer systems (Scriven & Sternling 1964; Goussis &
Kelly 1991) and two-layer systems (Smith 1966). The instability is monotonic if
S = (tr(C))2 − 4det(C) is positive and oscillatory if S is negative. The expression for S

can be presented in the following form:

S = a2
{
Bi 2 − 2[Bi c + 2ηα(κa + 1)] + Bi 2

c − 4ηακ
}
. (3.13)

One can see that S is negative (i.e. the instability is oscillatory) in the interval
Bi− < Bi < Bi+, where

Bi± = Bi c + 2ηα(κa + 1) ±
√

4ηα[Bi c(κa + 1) + κ + ηα(κa + 1)2], (3.14)

and positive (i.e. the instability is monotonic) otherwise. Note that because the term

Bi 2
c − 4ηακ = [(1 − a

√
ηακ)2 + α(1 + 2κa)][(1 + a

√
ηακ)2 + α(1 + 2κa)]

in the expression for S is positive, both Bi± are positive. Thus, for any two-layer
film, both monotonic and oscillatory instabilities are possible, depending on the Biot
number.

3.2.2. The case of small β

This case corresponds to a nearly vertical temperature gradient or a nearly
longitudinal disturbance orientation.

Let us present the renormalized eigenvalue Λ, which satisfies (3.6), in the form

Λ = Λ0 + βΛ1 + β2Λ2 + · · · . (3.15)

In the zeroth order, we obtain the equation

Λ2
0 − tr(E)Λ0 + det(E) = 0; (3.16)

its solutions are determined by expressions (3.7) and (3.8) analysed in the previous
subsection. As we have seen, both real and complex eigenvalues are possible.

In the first order, we find

2Λ0Λ1 − Λ1tr(E) − iΛ0tr(D) + iF = 0;

hence

Λ1 = i
Λ0tr(D) − F

2Λ0 − tr(E)
. (3.17)

If Λ0 is real, the first-order correction Λ1 is purely imaginary. Thus, the longitudinal
component of the temperature gradient does not influence the threshold of the
monotonic instability in the order O(β). For imaginary Λ0 (on the threshold of the
oscillatory instability), the correction Λ1 is complex. Note that the real part of Λ1

depends on the sign of ImΛ0, i.e. the waves moving in opposite directions grow
differently. In other words, the oscillatory neutral curve is splitted into two curves.
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Similarly, the second-order correction Λ2 can be calculated as

Λ2 =
−Λ2

1 + iΛ1tr(D) + D11D22

2Λ0 − tr(E)
. (3.18)

Note that it is purely real for a monotonic mode (when Λ0 is real and Λ1 is imaginary).

3.2.3. The case of large β

This case corresponds to a strong inclination of the temperature gradient and a
disturbance orientation not close to a longitudinal one. The solution of (3.6) can be
written as

Λ = Λ−1β + Λ0 + · · · . (3.19)

For Λ−1, we obtain the following quadratic equation:

Λ2
−1 − iΛ−1tr(D) − D11D22 = 0. (3.20)

We find that the roots are

Λ+
−1 = iD11, Λ−

−1 = iD22, (3.21)

thus the corresponding terms in the expansion (3.19) are purely imaginary and do
not influence the stability. Note that the frequencies of the disturbances

ω± = −Imλ± = −m⊥ImΛ± = −m‖ImΛ
±
−1,

hence

ω+ = −M‖D11kx, ω− = −M‖D22kx. (3.22)

Thus, each mode of disturbances corresponds to a wave which propagates in the
x-direction with a phase velocity which depends only on the number of the mode
(+ or −) but is independent of the wavenumber (in the longwave limit). This phase
velocity is proportional to the applied longitudinal temperature gradient.

The term Λ0 is obtained from the relation

2Λ0Λ−1 − Λ−1tr(E) − iΛ0tr(D) + iF = 0,

hence

Λ+
0 =

D11tr(E) − F

D11 − D22

, Λ−
0 =

D22tr(E) − F

D22 − D11

are real.
Therefore, the growth rates

Reλ± = M⊥k2Λ
±
0 + o(1), (3.23)

i.e. they do not depend on the orientation of the wavevector and on the longitudinal
Marangoni number M‖ (though the elements of matrix D, which is related to the
longitudinal temperature gradient, are significant).

We come to the conclusion that on the linear stage of the instability development,
any longwave disturbances move in the x-direction and grow or decay (on a slower
time scale) independently on the orientation of their wavevectors with the rate
proportional to the transverse temperature gradient. In the limit β → ∞ (purely
horizontal temperature gradient), expressions (3.22) are exact (in the framework of
the lubrication approximation used here, and in the absence of the van der Waals
forces and the interfacial tensions).

Thus, we arrive at the following paradoxical situation. The longitudinal component
of the temperature gradient is the only factor that violates the rotational symmetry
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of the problem. However, when this component is sufficiently large, the isotropy of
the problem is partially restored (the real part of the growth rate depends only on k2

and does not depend on kx in the leading order, while the imaginary part keeps its
dependence on kx), except the region of nearly longitudinal structures that have small
β even for large M‖.

Note that in the case of a thick layer, where shortwave rather than longwave
instabilities take place, the growth rate depends essentially on the direction of the
wavevector, except the case M‖ � M⊥ (see, e.g. Nepomnyashchy et al. 2001; Shklyaev
& Nepomnyashchy 2004).

3.2.4. Numerical analysis of the dispersion relation

The ‘isotropization’ of the real part of the growth rate (i.e. its independence on the
direction of the wavevector) takes place also in the framework of the full dispersion
relation (3.2).

We have calculated the dependence of the real part of the growth rate Reλ for the
most unstable mode on the wavenumber (kx, ky) for a model system with the following
values of parameters: η = 1.2, κ =1, α = 1, a = 1.5. The parameters characterizing the
intermolecular interactions are chosen very small: a0 = 0.01, a1 = −0.004, a2 = −0.001
(that means that L∗ = 0.1L∗

0, see (2.60)). The characteristic values of the Biot number,
(3.11) and (3.14), are Bi c =5.13, Bi− =1.01, Bi+ =21.25. For a fixed direction of the
wavevector, determined by the angle ϕ = tan−1(ky/kx), we have found the maximum
growth rate

(Reλ)m(ϕ) = max
k

(Reλ)(k cosϕ, k sinϕ).

As the first example, let us consider the case Bi = 0.1, M⊥ = 1, σ = 0.8. According to
formulae presented in § 3.2.1, the instability at M‖ = 0 (and hence also in the case M‖ �=
0, ϕ = π/2) is monotonic. The results of the computations are shown in figure 2. The
value (Reλ)m(±π/2) does not depend on M‖. For relatively small M‖, the maximum
growth rate depends significantly on the orientation of the wavevector (line 1). With
the growth of M‖, a long ‘plateau’ is developed (lines 2 and 3): the maximum
growth rate is nearly constant and increases rapidly when ϕ approaches ±π/2. Note
that (Reλ)m(0) < (Reλ)m(π/2), i.e. the disturbance with a longitudinal orientation
grows faster than any other disturbance. The dependences of the wavenumber km(ϕ)
corresponding to the maximum growth rate are similar.

As the second example, we present results of the computations carried out for
Bi =10, M⊥ = −1, σ = 1.6. The instability for ϕ = π/2 is oscillatory. As in the previous
case, a ‘plateau’ is developed for sufficiently large M‖, but this time (Reλ)m(0) >

(Reλ)m(π/2), i.e. the disturbance with a longitudinal orientation grows slower than
the transverse one (see figure 3).

3.3. The van der Waals instability

Let us now consider the case of an ultra-thin film, where the influence of intermolecular
forces is crucial. We adopt scaling (2.45). Recall that in the case of a one-layer film,
the influence of the intermolecular forces is determined by a single Hamaker constant,
and the dependence of the interaction energy between the gas phase and the substrate
on the thickness of the layer is monotonic. Depending on the sign of the Hamaker
constant, the film is either stable or unstable. In the unstable case, the development
of the van der Waals instability leads to the film rupture, if it is not stopped by a
repulsive interaction of another physical nature (e.g. by electrostatic interaction or
steric repulsion).
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Figure 2. Dependence of the maximum growth rate (Reλ)m on the angle ϕ for M‖ = 0.01
(line 1), M‖ = 0.05 (line 2) and M‖ = 0.5 (line 3). Other parameters are given in the text.

In the case of a two-layer film, the problem is characterized by three non-
dimensional Hamaker constants a0, a1 and a2 that characterize the interaction between
the solid substrate and the gas phase across the two liquid layers, between the solid
substrate and an infinite layer of liquid 2 across liquid 1, and between the gas and
an infinite layer of liquid 1 across liquid 2, correspondingly (see Fisher & Golovin
2005). If a1 > 0 or a2 > 0, the effective interactions between corresponding adjacent
interfaces are attractive, and they lead to a rupture of the bottom or top layer,
correspondingly. A more interesting situation takes place when a1 < 0, a2 < 0, but
a0 − a1 − a2 > 0, i.e. the effective interaction between the liquid 2/gas interface and
the liquid 1/substrate interface is attractive, while the effective interaction between
adjacent interface is repulsive, one can expect that a van der Waals instability will
develop, but it will not lead to the rupture of the layers (Fisher & Golovin 2005).
Instead of rupture, one will observe a certain kind of ‘spinodal decomposition’ of
the film into localized droplets and a thin ‘precursor’ film (Fisher & Golovin 2005;
Nepomnyashchy & Simanovskii 2006).

In the present paper, we consider solely the latter case. The analysis is performed for
the following set of parameters: a0 = 1, a1 = − 0.4, a2 = − 0.1, η = 1.2, σ = 0.8, which
corresponds to a model system formerly considered by Fisher & Golovin (2005). In
this subsection, we investigate the film decomposition in the presence of Marangoni
stresses. As in the previous subsection, other relevant parameters will be fixed as
follows: κ = 1, α =1, a =1.5.

In the absence of a transverse heating (M⊥ = 0), the Biot number is irrelevant. The
effect of ‘isotropization’, similar to that discussed in the previous subsection, is also
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Figure 3. Dependences of (a) the maximum growth rate (Reλ)m and (b) the corresponding
wavenumber km on the angle ϕ for M‖ = 0.001 (line 1), M‖ = 0.01 (line 2), M‖ = 0.05 (line 3)
and M‖ = 0.5 (line 4). Other parameters are given in the text.

observed in the case when the instability is caused by the action of the van der Waals
forces, rather than by the action of the transverse temperature gradient. This effect is
illustrated in figure 4.

Similar dependences of the growth rate on the orientation of the wavevector are
observed in the cases when the instability is generated by a joint action of the van
der Waals forces and the thermocapillary effect, for both ways of heating, from below
(figure 5) and from above.
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wavenumber km on the angle ϕ for M‖ = 0.01 (line 1), M‖ = 0.35 (line 2) and M‖ = 5 (line 3).
Other parameters are given in the text.

4. Nonlinear simulations
4.1. Methodology

The investigation of the film evolution under the joint action of the thermocapillary
stresses and intermolecular forces governed by full nonlinear equations (2.48)–(2.55)
has been fulfilled by means of nonlinear simulations.

The oscillatory linear instability, described in the previous section, is the origin of
Hopf bifurcations that generate solutions in the form of spatially periodic travelling
waves (generally, propagating in an oblique direction), standing waves and oscillatory
patterns. The simplest kind of solutions, travelling waves, can be obtained by solving
nonlinear ordinary differential equations (see, e.g. Thiele & Knobloch 2004).

However, it should be taken into account that the problem under consideration
is subject to a longwave instability , i.e. the interval of instability is 0 < k < km (for
a definite direction of the wavevector). Therefore, the spatially periodic solutions
with the wavenumber km are always unstable with respect to the disturbances with
k < km near the bifurcation point. The instability of spatially periodic solutions
typically leads either to a coarsening process (like in the case of the Cahn–Hilliard



Dynamics of ultra-thin two-layer films 181

1.6

1.8

1.4

1

1

2

3

2

3

1.2

(Re λ)m × 102

(a)

(b)

0 0.4 0.8 1.2 π
2

�

0.242

0.246

0.250

0.254

km

0 0.4 0.8 1.2 π
2

�
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wavenumber km on the angle ϕ for M‖ = 0.01 (line 1), M‖ = 0.35 (line 2) and M‖ = 5 (line 3).
M⊥ = 1; Bi = 0.1; other parameters are given in the text.

equation) or to the development of a spatio-temporal chaos (like in the case of the
Kuramoto–Sivashinsky equation). Under some conditions, stable spatially periodic
travelling waves are also observed (see Golovin et al. 2001). Thus, in the case of a
longwave instability, the computation of a bifurcation diagram for spatially periodic
solutions is of no use without a simultaneous investigation of their stability with
respect to disturbances with arbitrary spatial periods.

In the present paper, we overcome that difficulty in the following way. We consider
the temporal evolution of the system with definite (typically random) initial conditions,
and observe the behaviour of the system for large values of time. This approach allows
us to obtain regimes of motion far more complicated than travelling waves. In the
case when a travelling wave is observed as a final state, its stability is guaranteed.

It should be noted that this approach ignores unstable solutions of the problem.
Therefore it does not allow us to obtain the full bifurcation diagram and hence
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Figure 6. Isolines of h̃2(X, Y, τ ) (the left column) and h̃1(X, Y, τ ) (the right column); X is
the abscissa, Y is the ordinate; (a), (b) τ = 10 000; (c), (d ) τ = 20 000; (e), (f ) τ = 120 000.
Parameters are given in the text.

to determine the nature of bifurcations, leading to the transitions between different
stable motions.

Evolution equations (2.48) have been discretized by central differences for spatial
derivatives and solved using an explicit scheme. Periodic boundary conditions have
been applied on the boundaries of the computational region. Initial conditions for
hj , j =1, 2 have been chosen in such a way that the mean value of h1(X, Y, 0) was
equal to 1 and the mean value of h2(X, Y, 0) was equal to h, where h > 1. Hence,
our computations depend on the additional geometric parameter, h = H 0

2 /H 0
1 . Small

random deviations of hj (X, Y, 0) from their mean values were imposed using a code
creating pseudo-random numbers. The computations have been performed in the
region 240 × 240 using the grid 400 × 400 for the following values of parameters:
η = 1.2, κ = 1, α = 1, h = 2.5.
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(b) Y = 91; τ = 120 000. Parameters are given in the text.

4.2. Nonlinear development of Marangoni instability

4.2.1. Stripe-like patterns

In order to describe the influence of the longitudinal temperature gradient on the
Marangoni-induced instability, we present results of the computations that have been
carried out for the following set of parameters: a0 = 0.01, a1 = − 0.004, a2 = − 0.001,
Bi =10, M⊥ = − 1, σ = 1.6.

In the absence of the longitudinal heating (M‖ = 0), the problem is rotationally
invariant. Simulations carried out in a computational region with spatially periodic
boundary conditions reveal temporally non-periodic Marangoni oscillations (see
figure 9 in the paper by Nepomnyashchy & Simanovskii 2007). The presence
of sufficiently small M‖ violates the isotropy of the problem: disturbances with
wavevectors parallel to the direction of the thermocapillary flow have the maximum
growth rate. This anisotropy leads to the development of more ordered structures
than in the absence of a longitudinal heating. For M‖ = 0.01 (see line 2 in figure 3),
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the patterns that are developed during the stage of the linear growth are oriented
across the direction of the base thermocapillary flow (see figure 6a–b where fields of
h̃1(X, Y, τ ) = h1(X, Y, τ )−1 and h̃2(X, Y, τ ) = h2(X, Y, τ )−h are shown). The nonlinear
development leads to the formation and coarsening of modulated transverse stripes
(see figure 6c–d ). Finally, the evolution of the system creates a strongly nonlinear
travelling wave moving to the left with a constant velocity. No change of the wave
shape is observed during a very long time (the computations have been carried
out up to τ = 440 000). The free surface, h2(X, Y, τ ), contains a periodic system of
droplets connected by ‘necks’ in the transverse direction (see figure 6e). The shape
of the interface between the liquids, h1(X, Y, τ ), is more complex (figure 6f ). It
has a ‘plateau’ beneath the droplet and the neck, and elevations behind them. The
longitudinal cross-sections h̃2(X, Y, τ ) and h̃1(X, Y, τ ) across the droplet (Y = 210) and
the neck (Y =91) are shown, correspondingly, in figures 7(a) and 7(b).

With the growth of M‖, an ‘isotropization’ of the linear disturbances evolution
takes place (see § 3.2.4). For M‖ = 0.05, the dependence of the maximum growth rate
(Reλ)m on the angle ϕ between the wavevector and the direction of the base flow
has a ‘plateau’ in the region of sufficiently small ϕ (see line 3 in figure 3). Therefore,
the disturbances with different orientations of the wavevector start to grow with
nearly the same growth rate (see figure 8a–b). Finally, the nonlinear competition of
disturbances leads to the development of a one-dimensional oblique non-modulated
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Figure 9. Isolines of (a) h̃2(X, Y, τ ) and (b) h̃1(X, Y, τ ); M⊥ = 1; M‖ =0; σ = 0.8; Bi = 0.1;
τ = 21 300.

travelling wave (see figure 8c–d )

hj = hj (ξ ), ξ = X · n + ct, j = 1, 2,

where n is a unit vector in the direction of the wavevector, c is the phase velocity
of the wave, which moves in the negative direction with respect to axes X and Y .
We have measured the phase velocity of the travelling wave by the comparison of its
locations at different temporal snapshots, and have come to the conclusion that the
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Figure 10. Isolines of h̃2(X, Y, τ ); X is the abscissa, Y is the ordinate; (a) τ = 11 000; (b)
τ = 16 000; (c) τ = 21 300; (d ) τ = 23 000; M⊥ = 1; M‖ = 0.01; σ = 0.8; Bi =0.1.

phase velocity is constant. The nontrivial point is not the existence of such solutions,
which is compatible with the predictions of the linear stability theory and with the
symmetry properties of the system, but their stability. The shapes of deformations of
both interfaces are similar to those discussed in the previous paragraph.

4.2.2. Dynamics of droplets

Another scenario of the nonlinear development of the Marangoni-induced
instability in the absence of the longitudinal temperature gradient (M‖ =0) leads to
the decomposition of the film into droplets, which are subjected to a slow coarsening
process. In figure 9, typical fields of h̃1(X, Y, τ ) and h̃2(X, Y, τ ) are shown for the
system characterized by the following set of parameters: a0 = 0.01, a1 = − 0.004,
a2 = − 0.001, Bi = 0.1, M⊥ = 1, σ = 0.8 (predictions of the linear stability theory in
this case are shown in figure 2). Note that the height of the droplets on the free surface
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Figure 11. Isolines of h̃1(X, Y, τ ); X is the abscissa, Y is the ordinate; (a) τ =2000; (b)
τ =10 000; (c) τ = 20 000; (d ) τ = 46 000. Parameters are given in the text.

is essentially larger than the deformation of the liquid–liquid interface beneath the
droplets, but the locations of the structures at both interfaces coincide.

In the case M‖ �= 0, the droplets move under the action of thermocapillary stresses
in the direction opposite to that of the longitudinal temperature gradient. Two kinds
of droplets, ‘big’ ones and ‘small ones’, are observed. The bigger is the droplet, the
higher is its velocity (Nepomnyashchy & Simanovskii 2006). The motion of droplets
gives rise to their coalescence and hence to an essentially faster coarsening process
(see figure 10). The shape of the moving droplets is not round; the front side of a
droplet is steeper than its back side.

4.3. Nonlinear development of the van der Waals instability

Now we discuss the influence of the inclined temperature gradient on the nonlinear
development of the van der Waals instability. The content of this subsection has been
partially presented at the Third International Topical Team Workshop on Two-Phase
Systems for Ground and Space Applications (Bruxelles, Belgium, 10–12 September
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Figure 12. Isolines of h̃1(X, Y, τ ); X is the abscissa, Y is the ordinate; (a) τ =10 000; (b)
τ = 20 000; (c) τ = 26 000; (d ) τ = 125 000. M⊥ = 1; M‖ = 0.01; other parameters are given in
the text.

2008) and announced in the Proceedings of that workshop (Nepomnyashchy &
Simanovskii 2008).

In contradistinction to the case of a purely transverse temperature gradient, where
only coarsening droplets (or holes) are observed, the nonlinear dynamics in the case
of an inclined temperature gradient is characterized by a large number of competing
patterns. Below, we describe our observations.

4.3.1. Droplets dynamics

We describe the results of simulations done for system with the following set of
parameters: a0 = 1, a1 = − 0.4, a2 = − 0.1, Bi = 0.1, σ = 0.8.

First, let us recall results of simulations in the case M‖ = 0, M⊥ > 0 that have been
carried out by Nepomnyashchy & Simanovskii (2007). The interfaces are decomposed
into droplets that have a round shape, but the dependence of the liquid–liquid interface
hight on the distance from the droplet centre becomes non-monotonic so that this
interface resembles a ‘volcano’. The droplets do not move; the coarsening takes place
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Figure 13. Dependence of the droplets number on time in the case M⊥ = 0, M‖ = 0.05,
h = 1.2. Other parameters are given in the text.

due to the coalescence of large droplets caused by their growth and the disappearance
of small droplets.

Let us now consider the nonlinear development of the van der Waals instability for
M‖ =0.01. As one can see in figure 4 (line 1) and figure 5 (line 1), the influence of such
a small M‖ on the real part of the linear growth rate and the critical wavenumber is
negligible. We shall see, however, that the longitudinal component of the temperature
gradient strongly influences the time evolution of structures on the nonlinear stage.

First, let us consider the case M⊥ = 5, M‖ =0.01 (M‖/M⊥ = 0.002). The coarsening
of droplets is accelerated by their drift to the left due to the thermocapillary flow.
The shape of the liquid–liquid interface beneath the droplets is strongly asymmetric:
the crater-like depression is shifted to the left (front) part of the droplet, while in the
right part of the droplet a high elevation is observed (see figure 11).

With the growth of the ratio M‖/M⊥, the free-surface droplet shapes become
asymmetric; the asymmetry is especially strong for large droplets. The depressions in
the front parts of the droplets become shallow (see figure 12).

Because of the thermocapillary flow, big droplets move faster than small ones;
therefore, the droplets that have initially different values of coordinate X but close
values of coordinate Y coalesce rapidly. A typical dependence of the droplets number
on time is shown in figure 13. The characteristic time of coarsening in Y -direction
is much higher. Finally, coarsening in Y -direction can be stopped: only few droplets
survive which move in X-direction along separate ‘running tracks’. Typically, the
residual droplets have different sizes and move with different velocities.

Note that for a fixed value of M‖, the characteristic wavenumber grows with the
growth of M⊥ (see figures 4 and 5). Therefore, the size of the droplets decreases, and
their number increases when M⊥ grows.

4.3.2. Longitudinal stripes

Let us now consider the nonlinear development of the van der Waals instability for
M‖ =0.35. As one can see in figure 5 (line 2), the growth rates of the disturbances with
the wavevector inclinations in the interval 0 < ϕ < π/4 have comparable values, while
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Figure 14. Isolines of h̃1(X, Y, τ ); X is the abscissa, Y is the ordinate; (a) τ = 2500;
(b) τ = 7500; (c) τ = 60 000; (d ) τ = 118 000. Parameters are given in the text.

the disturbances with larger inclination angles grow much slower. Therefore, in the
early stage of the development, structures with transverse and inclined orientations
are developed. However, further evolution of the system leads to a significant change
of the structures: a system of longitudinal stripes is developed.

4.3.3. Ordered structures

In a certain region of parameters, we observed the formation of ordered structures
that consist of equally sized droplets moving with equal velocities and located at
equal distances from each other. An example of the formation of an ordered structure
is shown in figure 14 (M⊥ = −2.5, M‖ = 0.05). In the initial stage of the coarsening
a system of differently sized droplets is developed (figure 14a–b). Surprisingly, the
evolution leads to the formation of three droplets with equal sizes (figure 14c) that
finally become perfectly ordered and move with equal velocities (figure 14d ).

Another example is shown in figures 15 and 16 (M⊥ = − 5, M‖ = 0.1). The initial
stage of the coarsening is quite usual (figures 15a and 16a). At the intermediate stage,
one can observe a certain number of slightly asymmetric ‘big’ droplets, and some
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Figure 15. Isolines of h̃2(X, Y, τ ); X is the abscissa, Y is the ordinate; (a) τ = 2500;
(b) τ =20 000; (c) τ = 120 000; (d ) τ = 280 000. Parameters are given in the text.

droplets of small area, apparently created by a secondary instability of the liquid–
liquid interface (splashes). It is remarkable that the deformation of the liquid–liquid
interface caused by ‘small’ droplets is comparable with that caused by ‘big’ droplets
(figure 16b), while the deformation of the free surface by ‘small’ droplets is almost
negligible (figure 15b). Finally, the small droplets disappear, while the big droplets
become perfectly ordered (figures 15c and 16c). The ordered system of droplets moves
as the whole with a certain velocity to the left, and it does not evolve anymore (cf.
figures 15c, 16c and figures 15d, 16d ). The shapes of droplets are shown in figure 17.
Note that the locations of droplets on both interfaces are correlated.

Let us emphasize that the ordered droplets system is not a result of a casual
monodispersity of droplets due to a specific choice of initial conditions, but a result
of a natural evolution of the systems to its stable configuration. The same ordered
system of droplets has been obtained from different initial conditions. Note that
the obtained structure reminds those observed in a falling viscous film (Saprykin,
Demekhin & Kalliadasis 2005a, 2005b).
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Figure 16. Isolines of h̃1(X, Y, τ ); X is the abscissa, Y is the ordinate; (a) τ = 2500;
(b) τ = 20 000; (c) τ = 120 000; (d ) τ = 280 000. Parameters are given in the text.

4.3.4. Disordered structures

Outside the region of parameters corresponding to ordered structures, we observe
a dynamical regime which is characterized by the coexistence of several ‘immortal’
big droplets and a number of small droplets that are ejected by big droplets, grow
with time and finally coalesce with big droplets (see figures 18 and 19; M⊥ = − 5,
M‖ = 0.11). Note that a system of structures with essentially different sizes has been
observed formerly in a viscous film flowing down an inclined plane (Indireshkumar
& Frenkel 1997). As mentioned above, the hights of small droplets are comparable
with hights of big droplets at the liquid–liquid interface, but they are relatively small
at the free surface.

5. Conclusions
We have considered the evolution of a two-layer film under a joint action of

thermocapillary effect and intermolecular forces in the case of an inclined temperature
gradient. The governing equations have been derived in the lubrication approximation.
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Figure 17. Shapes of interfaces at τ = 280 000; (a) h̃2(X, Y, τ ); (b) h̃1(X, Y, τ ); X is the
abscissa, Y is the ordinate. Parameters are given in the text.

The development of instabilities is investigated in the framework of the linear stability
theory and nonlinear simulations.

The analysis shows that the combined action of the transverse and longitudinal
components of the temperature gradient can lead to novel phenomena that are not
observed when only one of those components is present.

It is obvious that the appearance of the longitudinal component of the temperature
gradient violates the rotational symmetry of the problem. It is unexpected, however,
that for sufficiently large values of that component, the isotropy of the linear stability
problem is partially restored (the real part of the linear growth rate is almost
isotropic). Though this ‘isotropization’ is valid only on the initial (linear) stage of
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Figure 18. Isolines at τ = 60 000 ((a) h̃2(X, Y, τ ); (c) h̃1(X, Y, τ )) and τ = 60 100
((b) h̃2(X, Y, τ ); (d ) h̃1(X, Y, τ )); X is the abscissa, Y is the ordinate. Parameters are given in

the text.

the disturbances growth, it influences the final nonlinear regime of the flow creating
oblique waves instead of transverse waves in a certain region of parameters. In the
regime of droplets, the longitudinal component of the temperature gradient is the
origin of the droplets’ motion and hence of their vigorous interaction. Depending
on parameters, one observes a large number of novel motion regimes: ordered and
disordered systems of droplets, ‘splashes’, modulated structures etc.

Finally, let us discuss the observability of the phenomena described above.
The computations presented in § 4.1 correspond to a0 = (L∗/L∗

0)
2 = 0.01. Using the

estimates H 0
1 ∼ 100 nm, L∗

0 ∼ 100 μm, we come to the conclusion that the typical values
of parameters M⊥ ∼ 1 and M‖ ∼ 0.1 correspond to the case α1(Ts − Tg)/σ

0
1 ∼ 10−4,

α1AL∗
0/σ

0
1 ∼ 10−4, i.e. the characteristic temperature differences in vertical and

horizontal differences sufficient for the development of the abovementioned regimes
are about 10−2 K. In our opinion, an appropriate system for the experimental
investigation can be the system of two liquids, methanol/n-octane, that was used
formerly in experiments on the Marangoni convection in relatively thick fluid layers
(Nepomnyashchy et al. 2006).
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Figure 19. Shapes of interfaces at τ = 240 000; (a) h̃2(X, Y, τ ); (b) h̃1(X, Y, τ ). Parameters
are given in the text.

The authors acknowledge the support of the Israel Ministry of Science (grant No.
3-3570). The research was partially supported by the European Union via the FP7
Marie Curie scheme (PITN-GA-2008-214919 (MULTIFLOW)).

REFERENCES

Bandyopadhyay, D., Gulabani, R. & Sharma, A. 2005 Instability and dynamics of thin liquid
bilayers. Ind. Engng Chem. Res. 44, 1259.



196 A. A. Nepomnyashchy and I. B. Simanovskii

Bandyopadhyay, D. & Sharma, A. 2006 Nonlinear instabilities and pathways of rupture in thin
liquid bilayers. J. Chem. Phys. 125, 054711.

Bandyopadhyay, D., Sharma, A. & Rastogi, C. 2008 Dewetting of the thin liquid bilayers on
topologically patterned substrates: formation of microchannel and microdot arrays. Langmuir
24, 14048.

Colinet, P., Joannes, L., Iorio, C. S., Haut, B., Bestehorn, M., Lebon, G. & Legros, J. C.

2003 Interfacial turbulence in evaporating liquids: theory and preliminary results of the
ITEL-Master 9 sounding rocket experiment. Adv. Space Res. 32, 119.

David, M. O., Reiter, G., Sitthai, T. & Schultz, J. 1998 Deformation of a glassy polymer film by
long-range intermolecular forces. Langmuir 14, 5667.

Davis, S. H. 1987 Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403.

Demekhin, E. A., Kalliadasis, S. & Velarde, M. G. 2006 Suppressing falling film instabilities by
Marangoni forces. Phys. Fluids 18, 042111.

Faldi, F., Composto, R. J. & Winey, K. I. 1995 Unstable polimer bilayers. 1. Morphology of
dewetting. Langmuir 11, 4855.

Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two-layer thin liquid film:
dewetting and autophobic behaviour. J. Coll. Interf. Sci. 291, 515.

Golovin, A. A., Nepomnyashchy, A. A., Davis, S. H. & Zaks, M. A. 2001 Convective Cahn–Hilliard
models: from coarsening to roughening. Phys. Rev. Lett. 85, 1550.

Goussis, D. A. & Kelly, R. E. 1991 Surface wave and thermocapillary instabilities in a liquid film
flow. J. Fluid Mech. 223, 25.

Haut, B. & Colinet, P. 2005 Surface-tension-driven instabilities of a pure liquid layer evaporating
into an inert gas. J. Colloid Interf. Sci. 285, 296.

Indireshkumar, K. & Frenkel, A. L. 1997 Mutually penetrating motion of self-organized two-
dimensional patterns of solitonlike structures. Phys. Rev. E 55, 1174.

Israelachvili, J. N. 1992 Intermolecular and Surface Forces. Academic Press.

Joo, S. W. & Hsieh, K.-C. 2000 Interfacial instabilities in thin stratified viscous fluids under
microgravity. Fluid Dyn. Res. 26, 203.

Lambooy, P., Phelan, K. C., Haugg, O. & Krausch, G. 1996 Dewetting at the liquid-liquid
interface. Phys. Rev. Lett. 76, 1110.

Lenz, R. D. & Kumar, S. 2007a Competitive displacement of thin liquid films on chemically
patterned substrates. J. Fluid Mech. 571, 33.

Lenz, R. D. & Kumar, S. 2007b Instability of confined thin liquid film trilayers. J. Coll. Interf. Sci.
316, 660.

Lifshitz, E. M. & Pitaevskii, L. P. 1980 Statistical Physics, Part 2. Pergamon.

Merkt, D., Pototsky, A., Bestehorn, M. & Thiele, U. 2005 Long-wave theory of bounded two-
layer films with a free liquid-liquid interface: short- and long-time evolution. Phys. Fluids 17,
064104.

Miladinova, S., Slavtchev, S., Lebon, G. & Legros J.-C. 2002 Long-wave instabilities of non-
uniformly heated falling films. J. Fluid Mech. 453, 153.

Morariu, M. D., Schaffer, E. & Steiner, U. 2003 Capillary instabilities by fluctuation induced
forces. Europ. Phys. J. E 12, 375.

Nepomnyashchy, A. A. & Simanovskii, I. B. 2006 Decomposition of a two-layer thin liquid film
flowing under the action of Marangoni stresses. Phys. Fluids 18, 112101.

Nepomnyashchy, A. A. & Simanovskii, I. B. 2007 Marangoni instability in ultrathin two-layer
films. Phys. Fluids 19, 122103.

Nepomnyashchy, A. A. & Simanovskii, I. B. 2008 Dynamics of non-isothermic ultra-thin two-layer
films. In Proceedings of the Third International Topical Team Workshop on Two-Phase Systems
for Ground and Space Applications, Bruxelles, Belgium; Microgravity Sci. Technol. 20 (3–4),
149–154.

Nepomnyashchy, A. A, Simanovskii, I. B. & Braverman, L. M. 2001 Stability of thermocapillary
flows with inclined temperature gradient. J. Fluid Mech. 442, 141.

Nepomnyashchy, A. A., Simanovskii, I. B. & Legros, J. C. 2006 Interfacial Convection in Multilayer
Systems. Springer.

Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod.
Phys. 69, 931.



Dynamics of ultra-thin two-layer films 197

Ospennikov, N. A. & Schwabe, D. 2004 Thermocapillary flow without return flow–linear flow. Exp.
Fluids 36, 938.

Pan, Q., Winey, K. I., Hu, H. H. & Composto, R. J. 1997 Unstable polimer bilayers. 2. The effect
of film thickness. Langmuir 13, 1758.

Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2004 Alternative pathways of dewetting
for a thin liquid two-layer film. Phys. Rev. E 70, 025201.

Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution
of liquid two-layer films. J. Chem. Phys. 122, 224711.

Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2006 Evolution of interface patterns of
three-dimensional two-layer liquid films. Europhys. Lett. 74, 665.

Renger, C., Muller-Buschbaum, P., Stamm, M. & Hinrichsen, G. 2000 Investigation and
retardation of the dewetting on top of highly viscous amorphous substrates. Macromolecules
33, 8388.

Saprykin, S., Demekhin, E. & Kalliadasis, S. 2005a Self-organization of two-dimensional waves
in an active dispersive-dissipative nonlinear medium. Phys. Rev. Let. 94, 224101.

Saprykin, S., Demekhin, E. & Kalliadasis, S. 2005b Two-dimensional wave dynamics in thin films.
II. Formation of lattices of interacting stationary solitary pulses. Phys. Fluids 17, 117106.

Scriven, L. E. & Sternling, C. V. 1964 On cellular convection driven by surface-tension gradients:
effect of mean surface tension and surface viscosity. J. Fluid Mech. 19, 321.

Sferrazza, M., Heppenstall-Butler, M., Cubitt, R., Bucknall, D., Webster, J. & Jones, R.

A. L. 1998 Interfacial instability driven by dispersive forces: the early stages of spinodal
dewetting of a thin polymer film on a polymer substrate. Phys. Rev. Let. 81, 5173.

Sferrazza, M., Xiao, C., Jones, R. A. L., Bucknall, D. G., Webster, J. & Penfold, J. 1997
Evidence for capillary waves at immiscible polymer/polymer interfaces. Phys. Rev. Let. 78,
3693.

Shklyaev, O. E. & Nepomnyashchy, A. A. 2004 Thermocapillary flows under an inclined
temperature gradient. J. Fluid Mech. 504, 99.

Simanovskii, I. B. & Nepomnyashchy, A. A. 1993 Convective Instabilities in Systems with Interface.
Gordon and Breach.

Simanovskii, I., Nepomnyashchy, A., Shevtsova, V., Colinet, P. & Legros, J. C. 2006 Nonlinear
Marangoni convection with the inclined temperature gradient in multilayer systems. Phys.
Rev. E 73, 066310.

Smith, K. A. 1966 On convective instability induced by surface-tension gradients J. Fluid Mech. 24,
401.

Thiele, U. & Knobloch, E. 2004 Thin liquid films on a slightly inclined heated plate Physica D
190, 213.

Ueno, I., Kurosawa, T. & Kawamura, H. 2002 Thermocapillary convection in thin liquid layer
with temperature gradient inclined to free surface, Heat Transfer 2002. In Proceedings of the
Twelfth International Heat Transfer Conference, Grenoble, France, pp. 129–134.


